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DISTRIBUTION OF ERROR IN LEAST-SQUARES  SOLUTION OF AN OVERDETERMINED 

SYSTEM OF LINEAR  SIMULTANEOUS  EQUATIONS 

by C. David Mi l ler  

Aerospace  Safety  Research  and Data Institute 
Lewis  Research  Center 

SUMMARY 

Probability  density  functions are derived  for  errors  in  the  evaluation of unknowns  by 
the  least-squares  method  for a system of n  nonhomogeneous linear  equations  in  p 
unknowns, for  n  greater  than p. The  coefficients of the unknowns are  assumed  to be 
correct and  computational  precision is assumed.  The  treatment deals only with e r r o r s  
due to  inaccurate  constant  terms  or due to  the  existence of unknowns within the  physical 
system that generates  the  system of equations, which affect the values of the  constant 
terms, and which are omitted  from  the  equations.  Columns of the coefficient matrix 
and the column of constant  terms are viewed as vectors  in  an  n-dimensional  space.  The 
method  involves  definition of an  error  vector  and  an  assumption that the error  vector 
will  be  randomly  oriented, with uniform  distribution  throughout the n-dimensional  space. 

A  probability  density function that gives due regard  to  the  effect of any known or 
assumed  biasing  effects  associated with the source of the  system of equations is shown 
to be insensitive  to  those  biasing  effects.  This  fact  justifies a substantial  degree of 
utility  for  an  approximate  density  function that is derived without regard  to  any  biasing 
effect  associated with the  source. 

Possible  applications are mentioned  for  use of the density  functions  to  enhance  the 
protection  provided by a warning  system  in which critical  values of unknowns represent 
the  hazards  for which warning  must be provided. 

INTRODUCTION 

A  least-squares  method  (ref. 1) is generally  used  for finding a compromise  solution 
for  values of p unknowns from a system of n  nonhomogeneous linear  equations  in 
which n is greater  than p.  An analysis of the  least-squares  method  that  may have 
novel  aspects will be described here. The  analysis  involves,  in  effect, a method of 



inversion of a matrix by use of vectors  in  n-dimensional  space.  The  vector  method of 
matrix  inversion  serves as an  essential  groundwork  for the method of statistical analy- 
sis of probable e r r o r  that will be presented. 

The  method of estimation of probable e r r o r  begins with an  assumption that the coef- 
ficients of the unknowns are dependable. It is assumed that the constant  terms  may be 
more  or less undependable either because of inaccuracies  in  their  measurement or be- 
cause of other  effects on the constant  terms  than the values of the unknowns and their 
coefficients.  The  method  involves  division of the n-dimensional  vector  space  into a p- 
dimensional  and  an (n - p)-dimensional  subspace.  The  p-dimensional  space is that 
spanned by the column  vectors of the  coefficient  matrix.  The (n - p)-dimensional  space 
is its orthogonal  complement. An error  vector is defined,  and it is shown that the com- 
ponent of the error  vector within the (n - p)-dimensional  subspace  can be evaluated di- 
rectly.  Statistical  relations  may  then be developed  between this component of the e r r o r  
and  the  component  within the p- dimensional  subspace. 

The  analysis is performed both  without and with regard  to  the  distribution of magni- 
tude of the e r r o r  to be expected  because of characteristics of the source of the  system 
of simultaneous  equations.  The two results are critically  compared. 

This  analysis was  performed  for  application  to a problem  in  infrared  spectroscopy. 
The  problem  concerned  monitoring of a gas-filled  space  for  detection of traces of spe- 
cific  toxic gases by measurement of the absorption of infrared  radiation of various wave- 
lengths.  Because of the impossibility of excluding  the  effects of many unknown gases 
that might be present  in  admixture with those  to be monitored, a mathematical  method 
was desired  for  predicting the probable error   in  the estimation of concentrations of the 
specific  toxic  gases,  produced by the  presence of the unknown gases.  The  mathematical 
concepts  developed here are  part  of the method that is under  development  for that pur- 
pose. 

SYMBOLS 

[AI 
xi 
x; 

coefficient  matrix of n  rows and p  columns 

vector  defined  by eq. (8) 

vector  extending  in  same  direction as ALi, but  with  magnitude  such as to  yield 
- 

unit  dot  product with vector 4 
any  specific  unit  vector 

unit  vector  directed  same as vector 4 
unit  vector  extending  in  same  direction as component of x~ orthogonal to 

- 

each  vector  for k # i 
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EO 
-c 

Eo+i 

n 

6, 
'k 

P 

R 

-c 

-c 

an  intermediate  vector  used  in  Gram-Schmidt  orthogonalization 

coefficient  within jth equation  for ith unknown 

matrix  defined  by eq. (4) 

matrix  defined  by eq. (6) 

error  vector  defined by  eq. (18) 

expected  value of any  argument  within  brackets 

component of error  vector E lying outside  subspace So but  within  subspace 

component of error  vector E lying  within  subspace So 

component of error  vector E lying  within  subspace So+i 

component of error  vector E lying  within  subspace S 

distribution  function of random  variable  appearing  within  parentheses 

density  function  for  random  variable  appearing  within  parentheses 

density  function of any  random  variable  x when given  y 

density  function for  random  variable  appearing  within  parentheses  (used  in- 

P 

stead of f (  ) only  when desirable to  avoid  confusion) 

density  function of random  variable  x when given  y  (used  instead of f(x 1 y) 
only when desirable  to  avoid  confusion) 

(subscript)  order  number of a n  equation  within  overdetermined  system 

measured  vector, defined  by  eq. (9) 

column matrix of constant  (measured)  terms 

component of vector within  subspace So 

component of vector  within  subspace S 
P 

(subscripted)  constant (or measured)  term  in  equation  designated by subscript 

number of simultaneous  equations  in  overdetermined  system 

k  member of a se t  of (n-p)  orthogonal  unit  vectors  spanning  subspace So 

k member of a set of p  orthogonal unit vectors  spanning  subspace S 

number of unknowns in  overdetermined  system of equations 

any  unit  vector  randomly  oriented  with  uniform  distribution  throughout 

th 

th 
P 

n-dimensional  space 
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total  n-dimensional  space 

(n - p)-dimensional  subspace  orthogonal  to S 
P 

(n - p + 1)-dimensional  subspace  consisting of subspace So plus  the  direction 
of Xi vector 

p-dimensional  subspace  spanned  by Ai vectors (i = 1 to  p) 

jth member of orthogonal set of n  unit  vectors  spanning  n-dimensional  space 

-L 

column matrix of unknowns 

column matrix of unknowns to  be  calculated by least-squares method 

magnitude of component of vector  in  direction of ii. J 
value of ith unknown as calculated by least-squares method 

ith unknown in  overdetermined  system of equations 

postulated true  value of ith unknown 

angle  between  vectors 3 and Ai 

absolute  value of dot  product of a specific  unit  vector xs and a unit vector E 

component of error  vector so defined as to make jth equation  exact as illus- 

- 

randomly  oriented  with  uniform  distribution 

trated  in eq. !( 17) 

algebraic  error  in  calculation of unknown designated by subscript i by least- 
squares method,  defined by eq. (19) 

fractional  error defined  by  eq. (51) 

angle  between  vectors Eo+i and Ai 

limit of integration  defined by eq. (C6) 

- - 

standard  deviation of % 

DESCRIPTION OF METHODS OF SOLUTION 

The least-squares  method of solution of an  overdetermined  system  in its usual  ma- 
trix  form will first be described. Then the vector  method will be described  and will be 
used as a foundation to  describe  the method of estimation of probable e r ror .  

4 



Matrix  Form of Least-Squares  Method 

We assume the existence of a system of equations,  derived  from  whatever  sources, 
as follows : 

2 ajixi = mj 
i= 1 

In equations (l), p is the number of unknowns 3 for which values are to be estimated, 
j identifies a particular  equation within the system of n  equations, the a.. values are 
known constant  coefficients, and the m.  values are known constant  terms. 

11 

J 
Equations (1) rewritten  in  matrix  form are 

Here [A] is a coefficient  matrix  including only the a.. values  in the same  column  and 
row  arrangement as in  equations (1). [X] is a column  matrix  including only the x.  var- 
iables. [MI is a column  matrix  containing the values of m  The  column  vector  M  or 
the matrix [MI will be referred to hereafter as the measured  vector  or  the  measured 
matrix. 

J1 

1- 

j *  

In the matrix  form of the least-squares  method of solving  equations (l), or  equa- 
tion (2), the following steps are now set forth  in detail in  order  to  define  certain  symbol- 
isms and  intermediate  relations that will be used later. 

(1) Equation (2) is converted  to 

where 

[X,]  now represents  values xci calculated by the least-squares  method, with the sub- 
script  c to  distinguish the calculated  values  from  postulated  true  values xti that will 
later be introduced. 

(2) Equation (3) is converted  to 

[C] = [B]-  '[AIT 



Vector  Form of Least-Squares  Method 

In the  vector  form of the  least-squares  method an orthogonal set of unit coordinate 
vectors  u is assumed,  spanning an n-dimensional  space.  Each of the  n  equations (1) 
is interpreted as a vector  equation confined to  a single  dimension  in  the  direction of the 
u  coordinate.  That is, the jth equation (1) may be represented by 

j 

j 

a . x i i . + a .  x i i . + a .  x u . + .  . - + ajpxpq = m.u 1 1 1 3  3 2 2 1  1 3 3 1  
-c 

~j (7) 

Thus the left sides, or the right  sides, of equations (1) become  an  orthogonal  set of 
vectors within the n-dimensional  space. 

Vectors are now defined as follows: 

- n  - 
A. 1 =x ajiuj 

j =1 

n 
ii =x m.u. 

J J  
j =1 

L 

The  vectors Ai(i = 1 to  p)  must be linearly  independent  to  allow a least-squares  solu- 
tion  by'the  vector  method.  Nonsingularity of matrix [B] (eq. (4)) implies  linear inde- 
pendente of the vectors Ai. 

- 
From  equations (7) and  the  defining  equations (8) and (9), we see that 

P "  
xiAi = M 

Normalization of the xi vectors  to unity  gives 

2 ajiuj - 
i =1 

- 
We  now develop a set of unit  vectors Ahi each of which extends  in the same  direc- 
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tion as the component of 'i, that is orthogonal  to  each + for k # i. Each A h  
vector  individually is the  end  result of a Gram-Schmidt  orthogonalization (ref. 2), 
though collectively  they are not  the set of mutually  orthogonal  vectors  obtained  from a 
single  Gram-Schmidt  orthogonalization.  A  different  Gram-Schmidt  orthogonalization 
must be performed  for  the  determination of each  vector, though t o  varying  extents 
parts of the  orthogonalizations  may be performed  in  common.  For  determination of a 
particular A;i vector,  the  Gram-Schmidt  orthogonalization  may  be  performed  in  any 
order, with  only  one exception;  the first p - 1 mutually  orthogonal  vectors  obtained 
must  span  the  same (p - 1)-dimensional  subspace  to which are confined all the & 
vectors  for k # i. The f i n a l  (pth) member of the  mutually  orthogonal set must  then  be 
the component of the qi vector that is orthogonal to  the (p - 1)-dimensional  subspace, 
normalized  to unity.  That pth member of the set, normalized,  will  be  the  vector. 

An example  for  the  procedure of finding the  vector AAi, with  n = 4, p = 3, and 

We  now define a set of vectors 

-c 

- 
i = 1, is given in appendix A. 

- - A;i A! = - 
1 

(i = 1 to  p) 
Ai - qi 

From equation (lo),  

But since,  for k f i, the  vector Ai is orthogonal  to the vector Ak, equation (13) may 
be rewritten as 

- 

From equation (12) we see that 

by definition, so that  equation (14) is equivalent  to 

xCi = AI * M 
" 
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The  subscript ci is used  in  equation  (16) to  indicate that the  equation  yields  values 
of 5 calculated  by  the  least-squares  method. It can  be  shown that the  vectors are 
always  identical  with  the  row  vectors of matrix [C] in  equation (5). 
' A sample  solution of a system of equations by  both matrix  and  vector  methods  ap- 

pears  in appendix B. Included  (eqs. (B3) and  (B8)) is an  example of the  fact  the A; 
vectors are identical with the  row  vectors of matrix [C]. 

- 

STATISTICAL STUDY OF ERROR 

We assume that the  source of equations (1) involved  effects due to  the  existence of 
a true  value of each xi, which we denote with the  symbol xti. We assume  each  a..  in 
equations (1) to be a precisely known constant.  The m.  values (often results of meas- 
urements  in a physical  system) we assume  to be unreliable  for one or  the  other  or both 
of two reasons: (1) The  physical  system that generates  equations (1) may  actually in- 
volve the  effects of more than  p unknowns. (2) The  entities  that are measured  to ob- 
tain the  values  m  may not be measured with great accuracy. As an  example of the 
first reason,  the  p  values xti might  be  the  concentrations of p gases  such as CO, 
C02, H20, and so on, within a mixture of gases. But additional  gases  could  be  present 
within the  same  mixture  and could affect  the  entities  that are measured  to  obtain  the 
values  m  The  presence of those  other  gases within the  mixture  might  be unknown or  
might  be  deliberately  neglected. We may  rewrite  equations (1) as 

11 

J 

j 

j' 

e ajixti + Ej = m j  
i=l 

where unknowns E .  a r e  included  and a re  now defined as having  such  values as may be 
necessary  in  order  to  make  the  equations  exact. It is, of course,  to be  expected that 
the E. values will usually be nonzero.  For, i f  replacement of all 5 ' s  in  equations (1) 
by true  values xti did not result  in  inequalities,  there would be no point in a least- 
squares  solution of the  overdetermined  system.  That is, if  inequalities were not cre- 
ated, one could as well accept  p of the n  equations at random  and  reject  the  rest. We 
now define an error  vector as 

J 

J 

We now wish  to  examine  the  statistical  effect of the error  vector E on the interrelation 
-c 
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between the xci and  the xti values, that is, the  influence of E upon an  algebraic 
e r r o r  qai defined as 

0 

With use of equations  (17)  instead of (l), equations  (13)  and  (14)  become 

Equation (16) properly  becomes 

From  equation (21) and  the  defining  equation  (19), 

qai = AI E 
" 

Statistical  distributions  can  be  derived  for  the  algebraic  error qai, under a basic 
assumption that the  vector E' is randomly  oriented, with uniform  distribution  through- 
out all the  possible  orientations within the  n-dimensional  space.  These  derivations are 
possible  because a component of E' is uniquely  determined by equations  (17). 

Determination of a Component of Error  Vector 

The full n-dimensional  space, which will be referred  to  hereafter as Sn, may be 
resolved into  two  mutually  orthogonal  subspaces S and So. The  subspace S is 
p-dimensional,  and is so defined  that  the  vector Ai and,  hence, AI lie exclusively 
within it for  any  value of i. The  subspace So is (n - p)-dimensional.  Let  the compo- 
nent of E lying within subspace So be  denoted by Eo. As will be  shown, this compo- 
nent is uniquely determined both as to  magnitude  and  direction by equations (17). Nei- 
ther  magnitude  nor  direction of E , the  component of E within the  subspace S can 
be  determined.  However, with I Eo I known, useful  statistical  relations  can be  devel- 
oped. 

that wil l  include  the  entire  subspace S o  and,  in  addition,  the  direction of the x; vector. 
We will  consider  the  interrelations of Eo, Ei (the component of E lying outside  sub- 
space So but within subspace So+i, i.e., in  the  direction of AI), and Eo+i (the compo- 

9 

-P - P 

- - 
- - 
-P P' 

For  any  value of i, we will  also  consider  an (n - p + 1)-dimensional  subspace So+i 

- -c 



nent of E  lying  within  subspace So+i). Thus, 
-b 

With lEol known exactly, we will show that a statistical  distribution of qai may  be 
derived. 

From  equations (8), (9), (17), and (18) 

2 + E = xi 
i=l 

or  

-c -c - - 8 + Ep + Eo = M + Mo 
i= 

P 

where EP and % are respectively  the  components of E' and  within  the  subspace 
S , and Eo is the  component of M within the  subspace So. 

into two equations, 

P - 
P 

Because of the  mutual  orthogonality of S and So, we may  separate  equation (25) 
P 

and 

We see  from  equation (27) that with the vector M and a set  of mutually  orthogonal  unit 
vectors  spanning  the  subspace So we could  determine  the  vector  component Eo direct- 
ly.  That is, if  we denote  that  orthogonal set  of unit vectors as +(k = 1 to  n - p), 

-c 

- 

In many cases, much  saving of computation  time  may be effected  with  use of an  indirect 
method  suggested  in  personal  communication  from Lynn U. Albers.  This method uses a 
set of mutually  orthogonal  unit  vectors  spanning  the S subspace,  which we denote by 

10 
P 



Fk(k = 1 to p). The  vector  component $ is determined  and  subtracted  from  the  vec- 
tor  c to  give Go o r  Eo. That is, 

-L 

D 

k=l  

The Sk vectors  may be  obtained  by a Gram-Schmidt  orthogonalization of the xi 
vectors. In the  example  presented  in  appendix A, with n = 4 and  p = 3,  the jIik vec- 
tors  might be 

i; - K t  
1 -  u l  - 

P2 = q 2  

-c 

P3 = XU3 

(from  eq. (A4)) 

(from  eq. (A2)) 

(from  eq. (Al))  I 
following procedure : 
ck randomly  oriented within the  space Sn 

so on. 

The Ok vectors  may be found by the 
(1) Select a set  of n - p  unit  vectors 

-c 

Alternatively,  use U1 = ul, U2 = c2, and 

tained  to  include  the uk vectors  for k = 1 to  n - p. 

Gram-Schmidt  orthogonalization by Q(k = 1 to  n - p). 

any  case  where a single set of simultaneous  equations is to be solved  by  the  least- 
squares  method. In cases  where  many sets of overdetermined  simultaneous  equations 
a re   to  be solved,  always  with  the  same xi vectors  but with different  vectors,  and 
with n - p  smaller  than p, the  method  using the o k  vectors  and  equation (28) might 
involve less computation. 

- " 
(2) Continue the  Gram-Schmidt  orthogonalization by  which the i;k vectors  were ob- 

(3) Denote the  n - p  additional  unit  vectors  resulting  from  the  continuation of the 

U s e  of the iik vectors, with equation (29), would involve much less computation  in 

-c 

-c 

Probability  Density  Function  for  Ratio  of  Magnitudes 

of Two Components of Error  Vector 

" 

11 



and that 

Thus 

Because the ratio 1 Ei [/I Eo I will be used  repeatedly, we introduce  here  the  symbol 

Later we shall also  need  the following relation,  from  equations  (23)  and (34): 

It can be shown easily that the basic  assumption, that the orientation of E' is uni- 
formly  distributed within the space Sn, implies that the orientation of Eo+i is uniform- 
ly  distributed within the SWi subspace.  Under that assumption, we now wish to  derive 
a probability  density function for r of equation (34). We will do s o  disregarding for the 
moment the fact that I Eo I is known. We will make the further  assumption that the  mag- 
nitude of E' and the orientation of E' are independently  distributed  and,  hence,  that the 
magnitude of E' and  the  value of r are independently  distributed. 

We will derive the density function for r indirectly,  using  the  density  function  for 
the  absolute  value of the dot  product of a fixed or specific unit vector As with another 
unit  vector R that is randomly  oriented, with uniform  distribution, within an n- 
dimensional  space. For convenience, we will use  the  symbol 

" 

- 

With such  notation,  appendix C presents a derivation of the following equation  for  the 
expected  value E[P] : 

12 



r ( y )  

s = 1 for  n 
s = 0 for  n odd 

The  density  function  for p, also  derived  in appendix C, is 

f(p) = m [ f l k  (- l)S+k+l ] (1 - p2y-3)’2 ( s s = = 0 1 for  for  n  n odd 

k = l  

Other  functions of p derived  in  appendix C, but  which will not  be  needed  here, are the 
distribution  function F(p) (eq. (C18)) and,  for  the  special  case of n = 100, an  approxi- 
mation of f(p) as one side of a normal  distribution  (eq. (C19)).  All these  equations  for 
functions of p will also  apply i f  is a randomly  oriented unit vector  according  to 
any type of distribution, so  long as R has the uniform  distribution. 

S, 

Equation (C16) gives  the  density  function  for  cos BWi upon substitution of n - p + 1 
for  n,  and  substitution of cos  for p. From  the  density  function  for  cos Bo+i we 
can  deduce the density  function  for r. For that purpose,  and  for  several later applica- 
tions, we will need  the  standard  formula  for  change of variable  in  the  probability  density 
function, 

where  y is a monotone increasing  or  decreasing function of x,  g(y) is the  probability 
density  function  for  y,  and  f(x) is the  density  function  for  x. If it is wished to  elimi- 
nate  x  from  the  expression  obtained  for  g(y), x may, of course, be  replaced by its 
equivalent  in terms of y.  (See ref. 3 or  other  text on mathematical  statistics  for  deri- 
vation of eq. (37). ) 

From  equations (33),  (34),  (C16), and (37), the  probability  density  function of r is 

13 



k=l  

L J 

Note that  the  standard  deviation  0.1057, as it appears  in  equation (39), is approximately 
(n - p + 1)-'I2. This  condition  should  not be expected for small  n - p. 

6.0 ' E ~ ~ o o o o  

0 
0 
0 

0 

I- 
- 
0 

2.0 0 
0- 
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Probability  Density  Function for Algebraic  Error 

An approximate  expression  for the probability  density  function of qai  given I zo I 
may now be obtained  with  use of equation (22) rewritten with use of equation (34) as 

and with use of equations (37) and (38) or  (39), with due allowance  for the fact the density 
function of qai must be normalized  for both plus  and  minus  values rather than  for  plus 
only as with equations (38) and (39). A n  assumption will be made that the density func- 
tion of r given I Eo I approximates the density  function of r. That is, 

- 

The accuracy of this  approximation will be examined later. With use of the  relations 
indicated, and with normalization  for both positive  and  negative  values of qai, 

/s = 1 for  n - p + 1 even\ 
s = O  for n -  p + l  odd 
- w  < qai < 03 

S r < w  

or,  according  to  equation (39), for  n = 100 and  p = 10, 

15 - 
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Here also note  that  the  standard  deviation  approximates 1 xi I 1 Eo I (n - p + 1)- 'I2 for  
large  n - p. 

a prior  distribution  represented by a density  function f (1 EWi 1) must be considered. 
This  prior  distribution  depends on the  source of equations (1). It relates to the proba- 
bility of existence of any  given  value of I Eo+i I i f  the  values of r and I Eo I a r e  unknown 

o r  disregarded. An equation  for f r I Eo I and  an  exact  equation  corresponding  to  the 

In order  to  derive  an  exact  equation  corresponding  to  the  approximate  equation (42), 

- - 
( 1 7  

(42) are derived  in  appendix D with  due regard  to  the  prior  density 
are as follows: 

f(r 1 = 

The  density.function g(r)  according  to  equation (38) and  the  density  function 

f r 1 Eo I according  to  equation (D7) are  identical i f  the  density  function of In I Eo+i I is ( I - )  
made  equal  to a constant.  Jeffreys (ref. 4) argues that, in  the  absence of any  informa- 
tion  to  the  contrary,  the  unbiased  distribution  for a random  variable  constrained  to non- 
negative  values  should be that giving  uniform  distribution  to its logarithm.  The  identity 
of the right-hand sides of equations (38) and (D7) when the  density  function is uniform for 
In I Eo+i I is in  harmony with that opinion. 

times, but with different  m.  values  from one time  to  another, a histogram could  be 
With a given  physical  system that generates  the  same  system of equations (1) many 

J 
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constructed  for  the  frequencies of I Eo I values  determined  from time to  time  with  use 
of equation (28) o r  (29). From  the  histogram, an expression  for  the  density  function 
f (I Eo I) could be found empirically.  From that density function f(l Eo I), a density func- 
tion  for f (1 EWi I) could  be derived  for  use in equations (D7) and (D8). 

Density  Function of r as an Approximation for Density Fundion of r Given I ?,I 
We will now use  equation (D7) to  obtain an estimate of the  degree of accuracy of 

equation (41). In order  to  do so, we will  assume that I Eo+i I is distributed as the  posi- 
tive  side of a standard  normal  distribution  curve.  That is, the following density  function 
is assumed: 

-c 

Under  that  assumption,  equation (D7) becomes 

The solid  curve  in  figure 2(a) represents  values of density  function  plotted on a log- 
arithmic  scale  against  values of r according  to equation (38) for  n - p = 10. Also 
shown for the same  value of n - p, as the  plotted  points, a r e  probability  densities  ac- 
cording  to equation (45) for  values of \Eo 1 equal  to 0 .1 ,   1 .0 ,  2.0, and 3 .0 .  These 
values of I Eo 1 ,  of course,  can  be  considered as multiples of the  standard  deviation of 
I Eo+i I ,  which  by equation (44) has  been  assumed  to  be one. 

From the figure we see that, for n - p = 10, in the use of g(r)  according  to equa- 

tion (38) as a substitute  for  g r I Eo I according  to  equation (D7): 

- - 

( I - )  
(1) Equation  (38) is accurate  within a range  from  30-percent  underestimate  to 100- 

percent  overestimate of the  true  value of the  density  function,  for all values 
0.1 < ] E o [  < 3 .0 ,  for  values of r < 0 . 5 .  
“L 

(2) Equation (38) is even  more  accurate  for all values of r < 1.0 and  values 

(3) For large I Eo 1 and  large r, where equation (38) is not very  accurate, it is at 
0.17 p o l  < 1.0. 

-c 

least conservative  in  the  sense that it overestimates  the  density  function. 
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I Al l  according to eq. (D7) 
for in form  of eq. (45) 

low  valuesof r where 
plotted  points for+vari- 
ousvaluesof  IE,,~ are 
not separable to scale 

- Eq. (38) 

0 

c 

\ B 
I- \ 

r 

(a) n - p = 10. (b) n - p = 100. 

Figure 2. - Comparison of  results  according to approximate  equation (38) with  results  according to exact equation (D7). 



Figure 2(b) is a similar  plot  for  n - p = 100. It shows that equation (38) is a good 
approximation  except  for  the  combination of conditions 1 Eo I > 2.0  and r 2 0 . 3 .  The 
fact that this combination of conditions is relatively rare may  be  seen  from  the  ordi- 
nates  in the figure. It is clear from  comparison of the  two par ts  of figure 2 that  equa- 

tion (38) is increasingly  exact  for  use as if it were  an  expression  for  g r IEoI instead 
of an  expression  for  g(r)  with  increasing  value of n - p. ( 1  ) 

A numerical  example, with use of equations (38) and (a), for  n = 6 and  p = 3, is 
included  in  appendix E.  Also  reported  in that appendix are the  statistical  results of 
least-squares  solutions  for 10 000 similar  systems with random  values of a..  cj,  and 
xti. The  results of the 10 000 solutions are plotted  and  compared  there with a curve 
representing  equation (38). The  results  from the random  problems agree with equa- 
tion (38) within the plotting  accuracy.  The  results show, therefore, that with the  density 
function f (1 I) that existed  for  the  method of random  selection of values of E equa- 

tion (38) gives on the  average  quite  accurate  values of g r I Eo I even with n - p + 1 as 
small  as four. 

To the  same  extent that g(r)  may be used' as an  approximation  for  g r I Eo I , equa- 

11' 

( I - )  
j '  

( 1 -  1 
tion  (42)  may be used as an  approximation  for  equation (D8). This condition is true be- 
cause  equation (41) was used  in  derivation of equation (42). 

Statistical  Considerations  Regarding  an  Anticipated  System of Equations 

Relative  to  guidance of design  for a physical  system  that is expected  to  generate  an 
overdetermined  system of simultaneous  equations, we  now wish to  consider  some statis- 
tical  relations that may  be  expected within the system of equations  before it has been 
generated. 

We postulate that the following details only a r e  known regarding  the  system of equa- 
tions (17) that are expected  to be generated: 

(1) The  values of n  and  p 
(2) All of the aji values 
(3) Possible or probable xti values 
(4) Possible or  probable  values of 1E 1 (eq. (18)), which  may be inferred  from known 

- 
o r  postulated  facts  regarding  the  potential  sources of e r r o r  

In particular, no values of m as yet exist and,  in  fact, no overdetermined  system of 
simultaneous  equations  yet exists. 

j 

We wish  to  consider  the  magnitudes of the algebraic  errors qai that  may be antici- 
pated when the  simultaneous  equations  have  been  generated  and  solved,  in  relation  to  the 
anticipated  magnitudes of xti and E'. 
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From  equations (ll), (12), (15), and (22), 

The  denominator  in  the final form of equation (46) is necessarily  positive (eq. (15)). 
Note that this equation  applies  in  general without need  for  specific known values of m 
The  expected  absolute  value of the dot product of unit vectors  in the numerator  in the 
final  form of equation (46) should have the  value  given  for E[p] in  equation (C12). Hence, 
the expected  absolute  value of the algebraic  error is 

j *  

or 

where ai is the angle  between  the  vectors xi and Ai. 

n,  for a given number of unknowns  p. In equation (48), the ratio I El/lxi 1 should not be 
systematically  affected by the  value of n. But E[@] will be smaller with large  n  ac- 

.-c 

We now wish to show  that Iqail generally  tends  to be smaller with larger  values of 

cording  to  equation (C12). So i f  that cos cyi tends  to be greater with larger 
n it will necessarily follow that to  be smaller with larger n. This  fact 
may be shown as follows. 

In the  absence of contrary  information, xi may be regarded as randomly  oriented 

spanned by the  vectors, and its orthogonal  complement Sn p+l. The 
with uniform  distribution within the Sn space.  Consider a (p - 1)-dimensional  subspace 

vector xi has  components that we  now denote by x 
- 

sp- 1 7  

sp- 1 and  Sn-p+l,  respectively. An-p+l 

- 
p- 1 and An-p+l within subspaces 

extends  in  the  same  direction as xi. Hence, 

I 
cot a. = 

1 lip- 1 I (49) 
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We may now infer  whether  the  expected  value of cot ai is an  increasing function of n 
with  fixed  p. To  do so, we may  use equation (38), recognizing that S is analogous 
with So, 'n- p+ 1 with  Sp,  Ai  with E, Anmp+1 with E' and $- with Eo. If we can 
infer  from  equation (38) that the  expected  value of I Ep I/[ Eo I increases when n  and  p 
are increased by the  same  integral  value, it follows  that  the  expected  value of cot cui of 
equation (49) increases when n is increased with  p  unchanged. 

- " P-1 - 
P' - 

Now consider a special  case  in which  the Aui vectors,  and  hence  the AAi vectors 
"- -L 

also, are an  orthogonal set. Then 

where ri is the  same as r of equation (34). But  by inspection of equation (38) we see 
that  the  expected  value of each ri will be  unchanged when n  and  p are  increased by 
the  same  integral  value. So increase  in  the  number of summed  terms  under  the  radical 
in  equation (50), with unchanged  expected  values of the  individual  terms,  means that the 
expected  value of 1 ip \/I Eo 1 increases. It follows that the  expected  value of cot ai of 
equation (49) increases with increase of n  without  change of p,  E[cos ai] increases, 
and  E [I vai I ]  decreases. 

sider,  in  turn,  the  expected  values of riA, riB, rkA,  and rkB (k z i), for  two systems 
A and  B  with the  same  value of  nA - pA and  nB - pB but  with pB larger  than pA. 
By equation (38), with no value  given  for  any rkA or  rkB, the  expected  values of riA 
and riB must  be  the  same.  Then,  given  the  same  values of riA and riB, the  values 

I E (o+i)A I = d m  and (E(o+i)Bl, - - similarly  defined  for B, must  be  the 
same. NOW if  we  designate r h  as I E ~ I / I  E(,+i)AI and r i B  as I i&B \ / I  E(o+i)BI, 
we  see  that  the  expected  value of either r h  or  r b  is given  by  equation (38), with 
n - p increased by one.  It  follows  that  the  expected  values of r h  and riB are the 
same,  hence  the  expected  values of 1 EM]  and I EkB I are the  same,  and  finally  the 
expected  values of rM given  riA  and rm given 'iB are the  same.  This  procedure 
could be continued for expected  values of each r (j # i o r  k) and  the  corresponding 
expected  values of rjB. It is clear,  therefore,  that  the  interdependence of the  values of 
r (i = 1 to  pA)  and of the  values of riB (i = 1 to p,) does not vitiate the  foregoing 
argument. 

An objection  might  be  made  that  the  values of ri are not  independent. But now con- 

-c 

- - 

jA 

iA 

In the  derivation of a density  function  for  the  error  in the least-squares  value of an 
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unknown, it will prove  convenient  to  use  the  absolute  value of qai expressed as a frac- 
tion of the  absolute  value of xti. That is, we will use  an  absolute  fractional  error 

As an  example,  for the specific  case of n = 100, we may  use the normal  approxima- 
tion  for f(p) given by the  equation 

f(p) = 7.876 exp - A (  p p 
2 0.1013 

L J 

derived  in  appendix C. With equations (C19) and (46), the probability  density function of 
qi may  readily  be found. With use of the  relation  expressed by equation (37), the  proba- 
bility density function  for % is 

(52 

Equation (52) is the  ordinary  normal  distribution  equation,  normalized  relative  to  posi- 
tive  values only, for  the  special  case of n = 100. That is, 

where 

0.1013 I E ' \  
D =  
rli cos 

(54) 

Equations (52),  (53), and (54) 
ing the accuracy to be expected in 

depend on the  value of 1 E'\. They are  useful for judg- 
the least-squares  solution of an  overdetermined  sys- 

tem of simultaneous  equations that will be generated by a given  physical  system with 
n = 100 when the values of i x & l  and I E 1 that  a r e  likely  to be encountered are known or 
postulated.  Analogous  expressions  might be found for  getting  comparable  results with 
other  dimensionalities. 
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APPLICATIONS 

Some types of physical  systems  provide  overdetermined  systems of linear  simulta- 
neous  equations on a continuing basis. The  coefficients  a..  may be unchanging  and 
highly dependable.  The  m.  values  may  change  from one time  to  another.  Moreover, 
the  m.  values  may be more or less undependable either  because of inaccuracies  in  their 
measurement or because of other  effects on the  m.  values  than  the  effects of the 8.- 

J J1 
and xti values. In such  systems,  the  methods of error  analysis that have  been  present- 
ed may be useful  in (1) the design stage  and (2) the  use  stage. 

In the  design  stage,  the  engineer would want to  use  the  analysis  to  help him  judge the 

J1 

J 
3 

degree of dependability  that  might be expected  from  each of several  proposed  systems. 
He may know, or be able to  estimate,  the  magnitudes of extraneous  effects upon the  m 
values. He will want to be able to tell the  user of the equipment how dependable  the  solu- 
tions  for the unknowns may  be  under  the  condition of those  anticipated  extraneous  effects 
being  present. 

j 

Equation (48), for  example, would be  useful  in  the  design  stage.  That  equation  yields 
the  expected  fractional  error due to the  anticipated  extraneous  effects, that i s ,  the mag- 
nitude of the E' vector.  Equation (48), then, would allow  an  estimate of the accuracy  to 
be  expected  for a given  value of n, or could  be used with a ser ies  of values of n  to de- 
termine  the  necessary  value of n  to  achieve a desired  accuracy.  The  engineer, of 
course, would have the responsibility of judging whether the basic  assumption of a uni- 
formly  distributed  orientation of the error  vector E' should  reasonably be applied  to  the 
specific  system  concerned. 

After a physical  system has been  designed  and  constructed  and is in  use,  for ex- 
ample,  for  monitoring  concentrations of toxic gases,  the  equations that have been  devel- 
oped would allow warnings of several  types. Suppose a decision  were  made that a criti- 
cal  concentration for gas i would be Then  equation  (16) could be used  to sound 
a warning  whenever the value xci were as great as That  warning could be 
accompanied by an  auxiliary signal i f ,  at the same  time,  an  effective  standard  deviation 
as great as xci from  equation  (16) were indicated. (Such an  effective  standard  deviation 
would be  the  product  0.10571x;l I zo( in  eq. (43), or some  similar  parameter  in  an 
equation  analogous  to  eq. (43) for  some  other  system  than  those  to which eq. (43) ap- 
plies. ) In that case, the probability would  be about  0.16  (positive  values of e r ro r  only) 
that the value xci could  be caused  entirely by interferents.  That is, in  about 16 per- 
cent of cases the value of xci,  equal  to xti plus the e r r o r  qai, could  equal or exceed 

Xi(crit) 
would, of course, be less  disturbed by the  warning  than if the indicated  standard devia- 
tion of qai were  much  smaller. 

A most  serious  and  urgent  warning  might be given at any  time when xci minus  the 

even with xti .= 0. With this probability, the user of the warning  equipment 
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effective  standard  deviation  were  in  excess of Regardless of the  value of xci, 
a warning  might be given that the  system could  not successfully  monitor  the  concentra- 
tion of gas i whenever an  effective  standard  deviation  greater  than xi(crit) was shown. 

These  possibilities of continuous error  monitoring  should  add  greatly  to  the  protec- 
tion  provided by a monitoring  system. 

CONCLUDING REMARKS 

Expressions have been  derived  for  the  probability  density  function of the  ratio of 
absolute  value of error  in  determination of an unknown to a uniquely  determinable  com- 
ponent of the e r r o r  function that exists within the system of equations.  These  expres- 
sions  are  for both known and unknown prior  distributions of e r ror .  It has been  shown 
that the  effect of the prior  distribution is usually  small.  The  analytical  results have 
been well confirmed by  Monte Carlo  results. 

A  method  has  been  presented by  which an  analytical  analysis  can be made of the 
e r ror   to  be expected  in  least-squares  solutions of overdetermined  systems of linear 
simultaneous  equations that are expected  to be generated by a given  physical  system.  It 
has  been shown that, other  things  being  equal,  including a constant  number of unknowns, 
the  expected error  diminishes with increasing  number of simultaneous  equations. A 
method has also been shown by which an estimate  can  be  made of the  expected  value of 
e r r o r  as a function of the  number of simultaneous  equations  and  the  magnitudes of e r ro r  
sources  expressed as an  error  vector. It has been shown that a normal  distribution is 
approximated  for the error  for  the  special  case of 100 simultaneous  equations with 10 
unknowns. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, January 24, 1972, 
111-05. 
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APPENDIX A 

EXAMPLE FOR METHOD OF DETERMINING VECTOR 

A specific  example will be solved  for  determination of the ql vector,  with  given 
Aui vectors (i = 1 to 3),  in  four-dimensional  space. A Gram-Schmidt  orthogonaliza- 
tion  will first be performed with use of the two Auk vectors,  for k f 1. This  orthog- 
onalization could be performed  in  either of the two possible  ways.  Then  the  orthogonal- 
ization will  be  continued to find the  third  member of the  mutually  orthogonal  Gram- 
Schmidt set, which will be  the x;l vector. 

-c 

-c 

The  three qi vectors  assumed are 

Aul = 0.258 Cl + 0.516 iC2 - 0.258 iC3 - 0 .775  E4 

%z = -0 .365  iC1 + 0.548 iC2 - 0.183 iC3 + 0.730 C4 
I 

Au3 = 0.547 iil + 0.730 iC2 + 0.365 C3 + 0.183 E' J - 

As a first step we find a vector  That  vector is the  component of xu2 that is or- 
thogonal  to the one-dimensional  subspace  to which the  vector Au3 is confined, normal- 
ized  to unity.  That is, 

- 

= -0 .531  iil + 0.366 C2 - 0.291 Z3 + 0.707 C4 (A2 ) 

We next find a vector Sl. That  vector is the  component of q1 that is orthogonal  to 
the  two-dimensional  subspace  to which  the vectors Au2 and Au3 are confined,  nor- 
malized  to unity. That is, 

- - 

xu1 - xu1 Au2 u2 - xu1 * xu3zu3 
-* ij;* .- * 

= -0 .138 + 0.538 E2 - 0.561 iC3 - 0.614 iC4 (A3 1 

For  p > 3 this procedure would  be continued in the same  manner.  For  p = 3, the 
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procedure is terminated  with 
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APPENDIX B 

NUMERICAL  EXAMPLE OF SOLUTION OF AN OVERDETERMINED SYSTEM OF 

SIMULTANEOUS  EQUATIONS BY BOTH VECTOR AND  MATRIX 

FORMS OF LEAST-SQUARES  METHOD 

A vector  solution will be described  in detail for a system of six  simultaneous equa- 
tions with three unknowns. Then  the  matrix  solution  for the same problem will be 
shown. The  a..  and  m.  values were selected by a random  procedure, details of 
which are immaterial at this point. 

11 1 

In general,  for the vector  solution, a series of values of any  vector Gi(i = 1 to k) 
will be represented by a 6 X k matrix  that will be designated [VI and the si vectors 
will be omitted. A ser ies  of scalars  like 
matrix  designated as [VI. 

The a.. values are 
11 

r-O. 3809 

-0.3644 

- 0.5705 
[AI = - 0.3020 

-0.1861 

-- 0. 85 13 

The m.  values  are 
1 

v,(i = 1 to k) will be represented by a column 
I 

0.8993 

-0. 1383 

- 0.0159 

- 0.6430 

- 0.7559 

0.7626 

I 1.3737 -0.0505 

0.2161 

- 
0.2657 

- 0.3259 

-0.1912 

- 0.6428 

0.2378 

- 0.9064- 
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- 
The following Ai( vectors  were  determined with use of equations (ll),  (12), and 

(Bl), by  the  method  described  in  appendix A: 

- 
- 0.6036  0.2697  0.6276 

-0.2753  -0.1293  -0.0395 

-0.7092 - 0.1587  0.3490 
[A'] = 

0.0025  -0.3009  -0.4630 

-0.7948  -0.4671  0.6588 

" 0 .  1386  0.2499  -0.4775. 

By equations (16),  (B2), and (B3), the  calculated  values xci are 

- 0.7309 
[X,] = 0.8832 [ 1.0041 

Solution of the same  problem by the  matrix  method will now be described.  Matrices 
[A] and [MI in  equation (2) are, of course,  the  same as the  matrices  in  equations (Bl). 
The  matrix [X] in  equation (2) is simply 

The matrix [B] of equation (4) will therefore be 

[ 1.4539 -0.5974  1.04821 

[B] = [A] [A] = -0.5975  2.3944  -0.1706 T 1 L 1.0482  -0.1706  1.5046J 

28 



The  inversion of matrix [B] in equation (B6) is 

1.5941 0.3212 - 1.0741 
0.3212 0.4858 -0.1687 

1.0741 -0.1687 1.3937 1 
Finally,  matrix [C] of equation (6) is 

- 0.2753 - 0.7092 0.0025 -0.7948 -0.1386 

- 0.1293 - 0.1587 -0.3009 -0.4671 0.2499 

0.6276 - 0.0395 0.3490 - 0.4630 0.6588 -0.4775, 

Note that the  row  vectors  in  matrix [C] of equation (B8) are  the  same as the xi 
(column)  vectors in equation (B3). Hence, the values xci determined by the  matrix 
method  (eq. (5)) will be  the  same dot products as by the  vector  method  and  equation  (B4) 
will  represent  the  solution by the  matrix method as well as by the  vector  method. 
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APPENDIX C 

STATISTICAL  DISTRIBUTION OF ABSOLUTE VALUES OF DOT PRODUCTS 

OF RANDOMLY ORIENTED VECTORS 

The  expected  absolute  value of a dot  product, as well as the  statistical  distribution, 
will  be  sought  for two unit  vectors xs and E within  n-dimensional  space.  The  results 
sought will  be  for a special  case of a more  general  treatment by Lord  (ref. 5). The  unit 
vector A, will be treated as fixed,  though the  result would  be the  same if it were ran- 
domly  oriented with any  distribution of orientation.  The  unit  vector R' will be assumed 
to  have a uniformly  distributed  orientation. 

-c 

The  method of finding  the  expected  absolute  value of the  dot  product, p according  to 
equation (36) will be discussed with reference  to  sketch (a), which, of course,  applies 

x1 = 

only to  three-dimensional  space.  The  method,  however,  will  be  extended  to n- 
dimensional  space.  Integrations  will  be  applied to the  surface of a hemisphere  that is 
centered  about  an axis in  the  direction of iil. The  specific  unit  vector As will  be 
taken as the  vector GI. 

The  random  unit  vector E is shown,  extending  in one of the  infinite  number of pos- 
sible  directions.  The  magnitudes of its components in the directions of GI, g2, and G3 
are X1, X2, and X3. A surface  element dS is shown,  which  contains  the  terminus of 
E. The  basic  assumption of uniformly  distributed  orientation of may now be more 

- 

explicitly  stated as an  assumption that all surface  elements of equal area on the hemi- 
sphere will have equal  probabilities of enclosing  the  terminus of R. 

-c 
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Now, 

P = X 1  

so the  expected  value of p is 

where 4 indicates  integration  over  the  entire  surface of the  hemisphere. 

face of unit  radius  in  rectangular  coordinates,  in  three  dimensions, is 
A standard  formula for determining  the area of the X1 centered  hemispherical sur- 

dX3  dx2 

in which  the  denominator of the  integrand is equal to  the  numerical  value of XI. So, 
from  equations (C2) and  (C3), 

1 dl-.; 

/I, 
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Extension of this formula  to  n  dimensions  gives 

where 

If integrations  in  numerator  and  denominator  are  performed  concurrently, the over- 
all task of integration  becomes  quite  simple.  Constants  can be cancelled at every  step 
of the process  after the first. Thus, 

" 

3 2  



and so on until we have 

or  

n- 1 
1 E[@] =- - -  k(- (f) - (:r & r (y) 

k= 1 

Now, 

f(p) cos 8 sin 8 de 

(C10) 

where f(p) is the  probability  density  function of p. 
If any of the  expressions  for E[p] in  equation  (C12)  contained X1, that is cos 8, 

that expression could  be  equated to  the  right  side of equation (C13) and  the  result could 
be  solved  for f(p). Unfortunately,  such is not  the  case. But an expression  may be 
found for f(p) as follows. 
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Equation (C5) can  be  regarded as applying to  the  entire  hypersphere if  both  numer- 
ator  and  denominator are considered  to  be  multiplied  by 2. Then,  for  the  expected 
value of 0, an integration  relative  to  any Xi is as valid as an  integration  relative  to 
X1. Hence,  instead of multiplying  the  innermost  integrand of the  numerator by X1, we 
could  have  multiplied  the  integrand  by X2 in  the  position  just  after  the first integral 
sign in the  numerator of equation (C5). Then  the  integration shown in  equation (C7) 
would  have been  omitted.  Equations (C8) to (C10) would  have  had identical  numerators 
and  denominators. We would  have arrived at 

or 

XI2 cos 0 sinn-20 d0 

An/z sinnm20 de 

E[@] = E[COS 81 = 

in which it is justified  to  use 0 = cos- 'X2 as if  it were 0 = cos- 'X1. By comparison 
of equations (C12),  (C13), and (C15), it may  be  seen that 

Lk=l I 
And the distribution function is 

fn -2  1 

s = 1 for n 
s = 0 for  n odd 

s = 1 for n 
= 0 for n odd (C17) 

0 = c o s - l p  

or 
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n- s- 3)/2 

~ ( p )  = s + (?${ p sinSB -1 + f-: sin2re k(-l)S+k+l 

2r+s 

k= l  
r =1 

L L 

We  may  disregard  any  question  regarding  the II factors or  summations  in  equations 
(C12),  (C16),  and  (C18) at certain  very low values of n  because  those  values of n are 
all below the  values of interest  in  this  report. 

For  n  taken  arbitrarily as 100,  the  solid  curve  in figure 3 represents  equation 
(C16). The  plotted  points in  the  same figure are calculated  values  obtained  with  the  fol- 
lowing probability  density  function: 

f(p) = 7.876  exp [- ( )I 
2  0.1013 

The  agreement  seems  to  be  sufficiently  precise  that, for n = 100,  equation  (C19)  may  be 
used for practical  purposes  in  lieu of equation  (C16). Note that  the  standard  deviation 
0.1013  in  equation  (C19) is approximately (n - 3)- 1/2 . 
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P 
Figure 3. - Density  function of absolute  value of dot product  of a specific un i t  vector  and a 

randomly  oriented  unit  vector in 100-dimensional space ( f (pH.  
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APPENDIX D 

EFFECT OF PRIOR DISTRIBUTION OF MAGNITUDE OF ERROR  VECTOR 

Equations (38) and (42) were  derived  for  the  case  where it was assumed that nothing 
was known about  the error  vector  or its components  except its uniform  distribution  in 
space. Now we wish  to  find a density  function  for r for  the  situation  where [ Eo[ is 
known exactly. We will show that a prior  density  function of the  magnitude of the  com- 
ponent of the  error  vector I Eo+i [ must be  taken  into  account. By prior  density  function 
we mean a density  function that is inherent  in  the  method of generation of the  system of 
equations (1). This  prior  density function would depend  on  the  source of equations (l), 
and  might differ for  any two different  physical  systems  that could  give rise to  the  same 
system of equations. 

6 

- 

We shall develop here  equations  analogous  to (38) and (42) that will include  consider- 
ation of the  prior  density  function f Eo+i . That is, we wish to  derive the probability 
density  function of r given I Eo 1 ,  where r is the  ratio I Ei I/\ E o \ ,  I Ei/ is the magni- 
tude of the component of the  error  vector  E lying  in an  arbitrary  direction  (labeled i) 
within  the  subspace Sp,  and I Eo I is the known magnitude of the  component of the e r r o r  
vector  Eo  lying  in  subspace So. Again the  basic  assumption that is to be employed 
here is the  uniform  distribution  over  space of the direction of the  error  vector  E,  in 
particular, that portion Eo+i of E  lying  in  the (n - p + 1)-dimensional  space  consisting 
of the addition of the ith direction  within  the  space S to  the  totality of the  space So. 

P 
This (n - p + 1)-dimensional  subspace is denoted So+i. 

By the  uniform  distribution  hypothesis,  the  direction of Eo+i is uniformly  distrib- 
uted  over So+i so that the  ratio I Ei I// Eo+i I can  be  identified with p and  the  probabil- 
ity  density  function of this  ratio is identical with that given by equation  (C16)  where  n 
takes on the value  n - p + 1. This condition of uniform  distribution of direction of Eo+i 
was used  to  derive  equation (38) for  the  density  function  g(r). 

- (I- 1) -c - - - - - - - - 

- 
I* 

- 

We assume that the  prior  distribution  represented by the  density  function f Eo+i - (1 - 0 
is independent of the  direction of Eo+i,  which implies that it is independent of r.  
Hence, 

where  g(r) is as given by equation (38). 
The  quantity that we wish  to  determine is f where I Eo I (and  not I Eo+i 1 ) is - - 

known. Using  equation (37) once  again, with equation (35), we can write 
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TO arr ive at an  expression for f ( I Eo+i I 1 I Eo I), which appears  in  equation (D2), we 
we apply  the rule of Bayes,  namely, 

We now need  an  expression for f , which appears  in  equation (D3). As  

that  equation  will  be  used  for  substitution  into  equation (D2), the  expression  for 

must be for given r, namely,  the  specific  value of r in  the left side of 

equation (D2). So, with 1 Eo+i I fixed  and  with use of equations (37) and (35) under  the 
assumption that I I and r a r e  independently  distributed, we get 

where g(r)  is as given by equation (38). 

Now, substituting f from equation (D4) into  equation (D3) and  then 

substituting f (D3) into  equation (D2), we get 

3% 



or ,  with use of equation (35), 

f (r I 

If we  now substitute from equation (38) and simplify, 
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Equation (D7) may be replaced  by  equation (38) even  for  use with  given I Eo I if we have 

reason  to  assume that f is only  negligibly  sensitive  to f 

With the  use of equation (D7), an exact  equation  corresponding to the  approximate 
equation (42) may be obtiiined in  the  same way as before.  The  result is 
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APPENDIX E 

STATISTICAL  RESULT OF ERROR DETERMINATIONS IN SOLUTIONS OF 
10 000 SYSTEMS OF SIMULTANEOUS  EQUATIONS 

As a Monte Carlo  verification of equation (38), least-squares  solutions  were  exe- 
cuted  for 10 000 systems of simultaneous  equations.  Each  system  included six equations 
and three unknowns. Each of the 10 000 systems involved use of 27 outputs  from a ran- 
dom number  generator, 270 000 random  numbers  in all. Each  random  number  was 
within  the  range  from  minus one to  plus one, with  rectangular  distribution within that 
range. 

Least-squares  solutions  in both vector  and  matrix  forms  were shown for  an  over- 
determined  system  in  appendix B. That system was one of the 10 000 used  in  the Monte 
Carlo  analysis now to be described.  As  an  example,  discussion of that  specific  problem 
will now be continued. 

For this example, 18 of the 27 outputs  from  the  random  number  generator were 
-c 

used for the Ai vectors shown in  equation (Bl) of appendix B, which is as follows: 

- 0.5705 
[AI = 

-0.3020 

I -0.1861 - 0.85 13 

Three of the 27 outputs were used as 

0.8993 

-0.1383 

- 0.0159 

- 0.6430 

- 0.7559 

0.7626 

0.8661 

0.2657 

- 0.3259 

-0.1912 

- 0.6428 

0.2378 

- 0.9064 
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The  remaining six from  the 27 outputs were used as 

7 0.0506 

0.0834 

- 0.0504 
[El = 

-0.0173 

0.0430 

- 0.3244 

With use of the 27 random  values shown in  equations (Bl),  (El), and (E2), the  vec- 
tor % was determined by using  equation (17), with the result shown by equation (B2) of 
appendix B, which is as follows: 

- 
1.3737 

- 0.0505 

0.2161 
[MI = 

- 0.9771 

- 0.3574 

0.3  180. 

From this point on, the  values  in  equation (E2) were not used  in  any way. Thus, the  
true  values xti from which the  problem  arose  were known, but  could  not be recovered 
from the xi and vectors  because  the  same % vector  could have resulted  from  any 
one of an  infinity of possible  combinations of xti values. So the  true  errors  relative  to 
the  combination of xti values that actually  gave rise  to  the  problem could be determined 
and  compared with the  calculated e r r o r  distribution. 

The  Gram-Schmidt  orthonormal set, spanning the S subspace, was determined 
with use of the xi vectors of equation (Bl) as follows: 

P 

42 

._ - . . . . . . .. ._ . . . . . . - . . . . ". . - ". 



P I  = 

- 
0.13699  0.58117  0.53166 

0.34924 - 0.08939  -0.03348 

0.50292 - 0.01025  0.29560 

0.40480  -0.41554  -0.39221 

0.32800  -0.48848  0.55803 

0.57870  0.49281 - 0.40448 - 
Continuation of the  Gram-Schmidt  orthogonalization,  with  use of Ui = ci (i = 1 to 3) 
gives  the  vectors Gi (i = 1 t o  3) spanning  the  subspace So as follows: 

-c 

101 = 

0.60067 0.00000 0.00000 

0.03648 0.93  144 0.00000 

- 0.36642 - 0.16457 0.70586 

0.65687 - 0.23148  0.15683 

- 0.09609 - 0.14604 - 0.55841 

- 0.25078 - 0.17441 - 0.40662 - 
Either with use of equations (28),  (B2), and (E4), or with use of equations (29),  (B2), 

and (E3), the  vector  component  Eo  was  determined as 

I- 

O. 

0. 

0. 

0. 

- 0. 

- 0. 

P o l  = 

- 
From  equation (E5), 

01585 

06482 

06705 

IEol = 0.16664 



The  values qai, now, are simply  the  values xci of equation (B4) from  appendix B, 
reproduced  here, 

- 0.7309 
[X,] = 0.8832 [ LO041 

The x; vectors were given  in  equation (B3) of appendix B, which is reproduced  here: 

[A'] = 

From  equation (B3) 

- 0.6036  0.2697  0.6276 

-0.2753 -0.1293  -0.0395 

-0.7092  -0.1587  0.3490 

0.0025  -0.3009  -0.4630 

-0.7948  -0.4671  0.6588 

- 0.1386  0.2499  -0.4775 

] A i  I = 1.26255 

IAi I = 0.69698 

IA; 1 = 1.18054 
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Finally,  from  equations (E6),  (E7), and (E8), 

'" = 0.25710 
1Xil lEol 

'a3 = 0.70456 
Pi1 P o l  J 

Absolute  values of the results shown in  equations (E9) are equivalent  to Monte Carlo 
trial values of r as used  in  equation (38). Accordingly,  from  the 10 000 random  prob- 
lems  solved, 30 000 Monte Carlo trial values  were  obtained  for r.  

The 30 000 trial results  were counted by class, with class  marks at 0.1,  0.3,  0.5, 
and s o  on. The  normalized  counts,  or  discrete  values of approximate  probability den- 
sity f(r) a r e  plotted as circular  symbols  in  figure 4. The  solid  curve  in  the  same  figure 
represents  equation (38) for  n - p + 1 = 4. The  abscissa  values  and  corresponding  pro- 
bability  densities  (ordinates)  for  the  absolute  values of the  results  in  equation (E9) are 
marked by the three  vertical  lines  in  the  figure.  They  contributed  to  the  counts at class 
marks 0.3, 0.7, and 0.9. 

0 Normalized  Monte  Carlo  result, f(r) - Eq. (381, g(r) 

r 

Figure 4. - Probability  densities  for r for n = 6 and p = 3. 
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